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We compare a fully quantum-mechanical numerical calculation of the conductivity of graphene to the
semiclassical Boltzmann theory. Considering a disorder potential that is smooth on the scale of the lattice
spacing, we find quantitative agreement between the two approaches away from the Dirac point. At the Dirac
point the two theories are incompatible at weak disorder, although they may be compatible for strong disorder.
Our numerical calculations provide a quantitative description of the full crossover between the quantum and
semiclassical graphene transport regimes.
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Arguably, one of the most intriguing properties of
graphene transport is the nonvanishing “minimum conduc-
tivity” at the Dirac point. The carrier density n in these single
monatomic sheets of carbon can be continuously tuned from
electronlike carriers for large positive gate bias to holelike
carriers for negative bias.1 The physics close to zero carrier
density �also called the intrinsic or Dirac region� is now un-
derstood to be dominated by the inhomogeneous situation
where the local potential fluctuates around zero, breaking the
landscape into puddles of electrons and holes.2 In the litera-
ture, two separate pictures have emerged to understand the
value of this minimum conductivity. The first picture ex-
pands around the universal value for the minimum conduc-
tivity �min=4e2 / ��h� for clean graphene3 and argues that the
presence of potential fluctuations smooth on the scale of the
graphene lattice spacing increases the conductivity through
quantum interference effects.4–7 The second picture extrapo-
lates to the Dirac region from the high-density limit, where
the conductivity for charged impurity scattering can be cal-
culated using the semiclassical Boltzmann theory. This ap-
proach has been further refined near the Dirac point by pos-
iting that the system acquires an effective carrier density n�

calculated from the rms density fluctuations �associated with
the electron-hole puddles� about the Dirac point caused by
the same impurities that are responsible for the scattering of
carriers at high density.8 These two conceptually different
approaches lead to strikingly different predictions for the
conductivity at the Dirac point: The Boltzmann transport
theory for Coulomb disorder predicts that increasing disorder
decreases the conductivity, whereas the weak antilocalization
picture has a conductivity that increases with increasing dis-
order strength. Given their vastly different starting points, it
is not surprising that the two approaches disagree.

A direct comparison between the two approaches has not
been possible mainly because the published predictions of
the Boltzmann approach include screening of the Coulomb
disorder potential, whereas the fully quantum-mechanical
numerical calculations are for a noninteracting model using
Gaussian disorder. Notwithstanding the fact that screening
and Coulomb scattering play crucial roles in transport of real
electrons through real graphene,9 the important question of
the comparison between quantum and Boltzmann theories
has remained unanswered, even for the Gaussian disorder

case. It is the goal of this work to provide such a comparison,
thereby establishing the bridge between these two widely
used complementary theoretical approaches to transport in
graphene.

In what follows we consider noninteracting electrons at
zero temperature in a Gaussian correlated disorder potential
that varies smoothly on the scale of the graphene lattice spac-
ing. This situation is described by the effective Hamiltonian
H=� ·p+U�r�, where v is the Fermi velocity, p is the �two-
dimensional� momentum, and U�r� is a random Gaussian
potential with correlation function,

�U�r�U�r��� = K0
��v�2

2��2 e−�r − r��2/2�2
, �1�

where � is the correlation length and K0 is a dimensionless
parameter that parametrizes its magnitude. Typical experi-
mental conditions correspond to K0 between 1 and 3.10,11 We
numerically solve the full quantum problem for a sample of
finite size L��, starting from intrinsic graphene where quan-
tum coherence effects dominate to high doping where quan-
tum effects are a small correction to the conductivity.12 We
have compared the numerical results to predictions of the
Boltzmann theory, its self-consistent modification of Ref. 8,
and weak antilocalization corrections for a range of disorder
strength K0 and carrier densities n.

Our main conclusions, to be supported by the material
below, are: �i� away from the Dirac point, both the Boltz-
mann theory and the full quantum solution agree to leading
order, ��n3/2, with deviations only in terms of order n1/2 and
smaller. This validates the assumptions of both theories, i.e.,
the Born approximation for the Boltzmann approach and use
of a finite sample size in the numerical approach. �ii� At the
Dirac point, the quantum conductivity increases with in-
creasing disorder strength K0; for K0�1 the increase is com-
patible with the self-consistent Boltzmann theory. �iii� As a
function of carrier density, the quantum conductivity, but not
the Boltzmann conductivity, shows a sharp reduction at the
Dirac point, which is most pronounced for K0�1; the con-
ductivity becomes proportional to 1 /K0 away from the Dirac
point; and �iv� the numerical quantum results are consistent
with d� /d ln L=4e2 /�h for ��4e2 /h, irrespective of the
carrier density n, consistent with the weak antilocalization
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theory. Our numerical calculations provide a quantitative de-
scription of the full crossover between the quantum and
semiclassical transport regimes for which no analytical
theory is available.

The Boltzmann conductivity corresponding to the model
of Eq. �1� is calculated using the relation �=e2	vF

2
 /�,
where 	=4kF /��vF is the density of states and the elastic
relaxation time 
 is given by

1



=� dqdr

4��
�1 − cos2 �q���kF − q��U�0�U�r��eiq·r,

where �q parametrizes the direction of q so that

�B =
4e2

h

�n�2e�n�2

K0I1��n�2�
=

2��e2

K0h
	�2�n�2�3/2 + O�n�2�1/2
 ,

�2�

with the carrier density n=kF
2 /�. The leading term for large

density can also be obtained considering the classical diffu-
sion of a particle undergoing small-angle deflections from
the random potential U.13 The weak antilocalization correc-
tion to the conductivity is4

���L,�� =
4e2

�h
ln�L/�� , �3�

where � is the transport mean-free path. In the Boltzmann
theory, � can be obtained from the relation �B=2�e2 /h�kF�.
A self-consistent modification of the Boltzmann theory was
proposed in Ref. 8 in order to describe transport near the
Dirac point n=0. For our Gaussian model of disorder, this
modification involves replacing the carrier density by a “self-
consistent” carrier density n�=�−1�
F

� /�vF�2, where 
F
�2

= ��
F+U�2�.14 We then find n�= �n�+K0 /2�2�2, and the self-
consistent prediction for the conductivity is given by Eq. �2�
above with n replaced by the self-consistent density n�.

In the numerical calculation we consider a graphene strip
of dimensions L�W with W, L��, connected to highly
doped graphene regions on both ends. Following the method
described in Ref. 5, we calculate the conductance G of the

graphene strip. The conductivity � is then obtained using the
relation

� = �W
dR

dL
�−1

, R = 1/G . �4�

We verify that our results do not depend on the real-space
discretization in the longitudinal direction, the cutoff of the
transverse momentum �see Ref. 5 for details�, and the aspect
ratio W /L. Extracting the conductivity using Eq. �4� is dif-
ferent from Ref. 5, where the conductivity was identified
with LG /W. The advantage of Eq. �4� is that it eliminates the
effect of an additive resistance from a region of ballistic
transport adjacent to the contacts to the source and drain
reservoirs and, hence, gives accurate conductivities for
smaller sample sizes than the identification of � and LG /W.
Our procedure is illustrated in Fig. 1, where we show typical
quantum numerical results for the resistance R=1 /G and the
conductivity ��L� defined through Eq. �4�.

We restrict the analysis of our numerical data to samples
with length L��. �In semiclassical transport, this is the re-
gime where electron motion is diffusive.� According to the
Boltzmann theory, ���3n /K0. In the diffusive regime, the
quantum conductivity � has a weak dependence on the
sample length L because of weak antilocalization. In order to
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FIG. 1. �Color online� Resistance R=1 /G �left� and conductiv-
ity � obtained using Eq. �4� �right�, as a function of sample length
L. The three curves shown are for W /�=200, K0=2, and �n�2=0,
0.25, and 1 	from top to bottom �bottom to top� in left �right� panel
.
Dashed lines in the right panel show d� /d ln L=4e2 /�h. The inset
in the left panel shows the crossover to diffusive transport �L���.
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FIG. 2. �Color online� Conductivity � versus carrier density n.
The left panel shows the low-density behavior near the Dirac point;
the right panel shows the high-density behavior. Data points are
from numerical simulation with K0=1 �squares� and K0=4 �dia-
monds� with dotted lines in the left panel as a guide to the eyes. The
dashed curves show the predictions of the Boltzmann theory, and
the solid lines show the self-consistent Boltzmann result.
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FIG. 3. �Color online� Conductivity � versus disorder strength
at the Dirac point �left� and at carrier density �n=K0 / ����2, corre-
sponding to the edge of the minimum conductivity plateau of Ref. 8
�right�. Data points are from the numerical calculation for L=50�,
and the �solid� dashed curves represent the �self-consistent� Boltz-
mann theory.
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compare numerical data at different K0 or n, we use two
different procedures. In Figs. 2 and 3, we compare conduc-
tivities at a reference sample length L=50�, which is well
inside the diffusive regime if K0�1. For this sample size and
beyond, the L dependence of the conductivity was consistent
with the theoretical expectation d� /d ln L=4e2 /�h of weak
antilocalization theory for all carrier densities if K0�1.
�Representative data for K0=2 are shown in Fig. 1.� At the
Dirac point, this size dependence of the conductivity was
previously observed in Refs. 5, 7, and 15.

Figure 2 shows the conductivity ��L=50�� versus the car-
rier density n for two values of K0. For n�2�1 the conduc-
tivity is well described by the asymptotic behavior of Eq. �2�,
the dominant correction term being proportional to n1/2. Re-
placing the carrier density n by the self-consistent carrier
density n� �solid lines� further improves the agreement. For
small densities, the quantum conductivity shows a sharp
minimum at the Dirac point n=0, which is most pronounced
for small disorder strengths. Such a dip is not present in
either the Boltzmann theory or its self-consistent modifica-
tion. Since in the quantum theory � increases with increasing
K0 at the Dirac point but decreases with increasing K0 away
from the Dirac point, the quantum � vs n curves of different
K0 cross somewhere in the region 0��n�2�1 for the pa-
rameter range we consider. This reversal in behavior was
previously noted by Lewenkopf et al.16 in numerical simula-
tions of a tight-binding model, although the numerical data
of Ref. 16 do not allow a conclusion to be made about large
carrier density. The agreement at high carrier density be-
tween the quantum and the Boltzmann theory is an important
new result of this work.

In Fig. 3, we address the conductivity as a function of
disorder, comparing the quantum and Boltzmann theories.
Motivated by prediction of Ref. 8 that the � vs n curve
exhibits a plateau of width �K0 /�2 near the Dirac point, we
consider the conductivity at the Dirac point n=0 �left panel�
as well as near the edge of the proposed plateau, at
�n=K0 / ����2 �right panel�.17 The numerical calculations at
the plateau edge are in good qualitative agreement with the
self-consistent Boltzmann theory. At the Dirac point, how-
ever, � is found to increase with K0 for the entire parameter
range we consider, which differs from the prediction of the
Boltzmann theory18 and the self-consistent Boltzmann
theory. The former predicts �=8e2 /K0h at the Dirac point,
whereas the latter deviates from this prediction for K0�1,
reaches a minimum at K0
9.71, and crosses over to the
asymptotic dependence ��2e2K0

1/2 /�h for K0�10. At large
K0 the numerical data follow the trend of the self-consistent
theory, although we cannot confirm the asymptotic depen-
dence �K0

1/2 from the parameter range studied in our simu-
lations. Upon reducing K0 below unity, the conductivity first
decreases sharply, consistent with a renormalization of the
mean-free path � for K0�1.6,19 Upon reducing K0 further,
the Dirac point conductivity saturates at the ballistic value
�=4e2 /�h.

The system-size-dependent weak antilocalization correc-
tion 	Eq. �3�
 is included in Figs. 2 and 3, which show � at
the reference length L=50�. In Fig. 4 we subtract the

L-dependent logarithmic increase and show the K0 depen-
dence of ��=limL→�	��L�−�−1 ln�L /��
.20 Subtracting
weak antilocalization significantly improves the agreement
with the self-consistent theory at large K0. Unlike the con-
ductivity at the reference length L=50�, which saturates at
4e2 /�� for small K0, �� continues to decrease without
bounds if K0 is lowered.

The increase in � with K0 at the Dirac point for weak
disorder is markedly different from the prediction of the
Boltzmann theory. A key assumption of this theory and its
self-consistent modification is that the graphene electron liq-
uid can be mapped to an essentially homogeneous system
with an effective carrier density n� equal to the rms of a
fluctuating “local” density determined by the random poten-
tial U. This assumption becomes questionable at the Dirac
point, where the electron liquid is broken up in puddles of
electronlike and holelike regions. At weak disorder, K0�1,
quantum fluctuations spread the carriers over many puddles
and the concept of a local carrier density becomes problem-
atic. It is in this regime that the difference between the quan-
tum and Boltzmann calculations is, as expected, most pro-
nounced.

The Gaussian random potential used here is the potential
of choice for comparisons of analytical theories and numeri-
cal simulations. Yet, it differs in essential ways from the
random potential in realistic graphene samples that do not
have Gaussian statistics since it is likely caused by charged
impurities in the substrate with a typical distance d from the
graphene sheet smaller than the spacing between impurities.
Still, it may be possible to extract equivalent parameters K0
and � from a realistic random potential �see Ref. 11�, imply-
ing that the sharp dip in conductivity predicted in the quan-
tum theory would occur in a window of n�5�1010 cm−2

around the Dirac point.21 This feature has not been observed
in experiments.10,22–24 Reasons why the dip has not been
seen could be a suppression of quantum coherence by finite
temperature effects or rippling25 of the graphene sheet, or
long-range fluctuations of the mean carrier density which
effectively smear the feature near n=0.26
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FIG. 4. �Color online� Same as Fig. 3 but for
��=limL→�	��L�−�−1 ln�L /��
.
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